Max-Margin DeepWalk: Discriminative Learning of Network Representation

نویسندگان

  • Cunchao Tu
  • Weicheng Zhang
  • Zhiyuan Liu
  • Maosong Sun
چکیده

DeepWalk is a typical representation learning method that learns low-dimensional representations for vertices in social networks. Similar to other network representation learning (NRL) models, it encodes the network structure into vertex representations and is learnt in unsupervised form. However, the learnt representations usually lack the ability of discrimination when applied to machine learning tasks, such as vertex classification. In this paper, we overcome this challenge by proposing a novel semi-supervised model, max-margin DeepWalk (MMDW). MMDW is a unified NRL framework that jointly optimizes the max-margin classifier and the aimed social representation learning model. Influenced by the max-margin classifier, the learnt representations not only contain the network structure, but also have the characteristic of discrimination. The visualizations of learnt representations indicate that our model is more discriminative than unsupervised ones, and the experimental results on vertex classification demonstrate that our method achieves a significant improvement than other state-of-the-art methods. The source code can be obtained from https://github. com/thunlp/MMDW.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Deep Random Walk for Network Classification

Deep Random Walk (DeepWalk) can learn a latent space representation for describing the topological structure of a network. However, for relational network classification, DeepWalk can be suboptimal as it lacks a mechanism to optimize the objective of the target task. In this paper, we present Discriminative Deep Random Walk (DDRW), a novel method for relational network classification. By solvin...

متن کامل

Max-Margin Weight Learning for Markov Logic Networks

Markov logic networks (MLNs) are an expressive representation for statistical relational learning that generalizes both first-order logic and graphical models. Existing discriminative weight learning methods for MLNs all try to learn weights that optimize the Conditional Log Likelihood (CLL) of the training examples. In this work, we present a new discriminative weight learning method for MLNs ...

متن کامل

Max-Margin Deep Generative Models for (Semi-)Supervised Learning

Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, it is relatively insufficient to empower the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs) and a class-conditional variant (mmDCGMs...

متن کامل

Max-Margin Nonparametric Latent Feature Models for Link Prediction

Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to d...

متن کامل

Max-Margin Deep Generative Models

Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, little work has been done on examining or empowering the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs), which explore the strongly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016